Microcontroller (EEC421)

Lecture 8

Dr. Islam Mohamed

Electrical Engineering Department
Shoubra Faculty of Engineering, Benha University
Islam.ahmed@fen.bu.edu.eg

Microcontroller

Lecture 8: ARITHMETIC OPERATIONS

Introduction

Flags

Instructions Affecting Flags

Incrementing and Decrementing

Addition :Unsigned and Signed Addition
Multiple-Byte Signed Arithmetic

Subtraction :Unsigned and Signed Subtraction
Multiplication and Division

Decimal Arithmetic

/—_/

v’ Applications of microcontrollers often involve performing
mathematical calculations on data in order to alter program flow
and modify program actions. The domain of the microcontroller is
that of controlling events as they change (real-time control).

v A sufficient number of mathematical opcodes must be provided,
however, so that calculations associated with the control of simple
processes can be done, in real time, as the controlled system
operates. When faced with a control problem, the programmer
must know whether the 8051 has sufficient capability to
expeditiously handle the required data manipulation. If it does not,
a higher performance model must be chosen.

* The arithmetic opcodes are grouped into the following types:

Mnemonic Operation
INC destination Increment destination by 1
DEC destination Decrement destination by |
ADD/ADDC destination, source Add source to destination without/with carry (C)
flag
SUBB destination, source Subtract, with carry, source from destination
MLIL AB Multiply the contents of registers A and B
DIV AB Divide the contents of register A by the contents of
register B
DA A Dectimal Adjust the A register

/—__J

A key part of performing arithmetic operations is the ability to store certain results of those
operations that affect the way in which the program operates.

For example, adding together two one-byte numbers results in a one-byte partial sum,
because the 8051 is an eight-bit machine. But it is possible to get a 9-bit result when adding
two 8-bit numbers.

The ninth bit must be stored also, so the need for a one-bit register, or carry flag in this
case, is identified. The program will then have to deal with the ninth bit, perhaps by adding
it to a higher order byte in a multiple-byte addition scheme. Similar actions may have to be
taken when a larger byte is subtracted from a smaller one. In this case, a borrow is
necessary and must be dealt with by the program.

Not all instructions change the flags, but many a programming error has been made by a
forgetful programmer who overlooked an instruction that does change a flag.

The 8051 has four arithmetic flags: the carry (C), auxiliary carry (AC), overflow (OV), and
parity (P).

e —

v' The C. AC, and OV flags are arithmetic flags. They are set to 1 or cleared to 0
automatically, depending upon the outcomes of the following instructions.

—

v' The following instruction set includes all instructions that modify the flags and is
not confined to arithmetic instructions:

FLAGS AFFEmﬂ _
C

INSTRUCTION MNEMONIC

ADC

ADDC

AML C dirpct
CINE

CLRE O
CPLC

DA A

iy

MAONY C deroct
RALIL

CORL C direct
RLC

RRL

SETB C

sUBR

C

C

C =10 cy | Ac | FO | RS1 | RSD | ov
C=cC

C

C =0 O

C

C=0 oy

C

C

C

C=1 e
¢ AC OV

/—__J

v' A flag may be used for more than one type of result. For example,

the C flag indicates a carry out of the lower byte position during

addition and indicates a borrow during subtraction.

v' The parity flag is affected by every instruction executed. The P flag
will be set to a 1 if the number of 1 's in the A register is odd and

will be set to 0 if the number of 1 's is even.

— e

** The simplest arithmetic operations involve adding or subtracting a binary 1 and a number.

0

e

%

These simple operations become very powerful when coupled with the ability to repeat the

XS

%

Operation that is, to "INCrement" or "DECrement" -until a desired result is reached.

e

%

Register, Direct, and Indirect addresses may be INCremented or DECremented.
No math flags (C, AC, OV) are affected.

e

%

Mnemonic Operation

INC A Add a one to the A register

INC Rr Add a ond to register Rr

INC add Add a one to the direct address

INC @ Rp Add a one to the contents of the address in Rp

INC DPTR Add a one to the 16-bit DPTR

DEC A Subtract a one from register A

DEC Rr Subtract a one from register Rr

DEC add Subtract a one from the contents of the direct address

DEC @ Rp Subtract a one from the contents of the address in register Rp

.’.’_—’

**Example:

Mnemonic Operation

MOV A.#3Ah A = 3Ah

DEC A A = 3%

MOV RO,#15h RO = |5h

MOV 15h, #12h Internal RAM address 15h = 12h
INC @R0 Internal RAM address 15h = 13h
DEC 15h Internal RAM address 15h = 12h
INC RO RO = 16h

MOV 16h,A Internal RAM address 16h = 39h
INC @R0O Internal RAM address 16h = 3Ah
MOV DPTR.,#12FFh DPTR = 12FFh

INC DPTR DPTR = 1300h

DEC 83h DPTR = 1200h (SFR 83h is the DPH byie)

* All addition is done with the A register as the destination of the result.

* All addressing modes may be used for the source: an immediate number, a register,
a direct address, and an indirect address.
* Some instructions include the carry flag as an additional source of a single bit that

is included in the operation at the least significant bit position.

Mnemonic Operation

ADD A #n Add A and the immediate number n; put the sum in A
AL A Rr Add A and register Rr; put the sum in A

ADD A add Add A and the address contents; put the sum n A

ADD A (nRp Add A and the contents of the address in Rp; put the sum in A

Mote that the C Aag is set to | if there is a carry out of bit position 7; 1t 1s cleared to ()
mherwise. The AC flag is set to | if there is a carry owt of bit position 3; it is cleared
therwise. The OV flag 15 set to 1 if there is a carry out of bit position 7, but not bit

sition & or if there is a carry out of hit position 6 but not bit position 7, which may be

wpressed as the logical operation
OV = C7 XOR C6 ‘

—_—

* Signed numbers use bit 7 as a sign bit in the most significant byte (MSB) of the

group of bytes chosen by the programmer to represent the largest number to
be needed by the program.

e Bits 0 to 6 of the MSB, and any other bytes, express the magnitude of the
number. Signed numbers use a 1 in bit position 7 of the MSB as a negative sign
and a 0 as a positive sign. Further, all negative numbers are not in true form,
but are in 2's complement form.

* Insigned form, a single byte number may range in size from I0000000QDb,
which is - 128d to 01111111 b, which is + 127d. The number OOOO0O00O0Db is
O0O0d and has a positive sign, so there are 128d negative numbers and 128d

positive numbers. =

/\ g

e Unsigned Addition

v" Unsigned numbers make use of the carry flag to detect when the result of an ADD

operation is a number larger than FFh. If the carry is set to one after an ADD, then

the carry can be added to a higher order byte so that the sum is not lost. For

instance,

95d = 01011111b
18ad = 10111101b

284d 1 00011100b = 284d

The C flag is set to 1 to account for the carry out from the sum. The program could add the
carry flag to another byte that forms the second byte of a larger number.

e Signed Addition

v If unlike signed numbers are added, then it is not possible for the result to be

larger than -128d or + 127d, and the sign of the result will always be correct.

v’ If positive numbers are added, there is the possibility that the sum will exceed +
127d, as demonstrated in the following example:

—001d = LL1L1LLb
+027d = 00011011b

+026d 00011010b = +026d

+045d = 00101101b
+075d = 01001011b

+120d O1111000b = 120d

+100d = 01100100b v OV flag
+050d = 00110010b

+150d 10010110b = —106d

e Signed Addition

=070d = 10111010b
—070d = 10111010b

—140d O1110100b = +116d

Or, the magnitude can be interpreted as — 12d, which is the remainder after a carry out of
—128d. In this example, there is a carry from bit position 7, and no carry from bit position
6, so the carry and the OV flags are set to 1. The magnitude of the sum is correct; the sign
bit must be changed toa 1.

FLAGS ACTION
c ov
0 0 None
0 1 Complement the sign
1 ¢ None
1 1 Complement the sign

ADDC A, add

ADDC A Rr
ADDC A,@Rp

ADDC A #n Add the contents of A, the immediate number n, and the ag; put

the sum in A

Add the contents of A, the direct address contents, and the C flag;
put the sum in A

Add the contents of A, register Rr, and the C flag; put the sum in A

Add the contents of A, the contents of the indirect address in Rp,
and the C flag; put the sum in A

Mnemonic Operation

MOV A #1Ch A= [ICh

MOV R5,#0Alh E5 = Alh

ADD AR5 A=BDh,C=00V=10
ADD AR5 A=5EhC=1,0V=1
ADDC A, #10h A=6Fh,C=00V=10
ADDC A, #10h A=TFh;C=0,0V=10

* Subtraction can be done by taking the 2's complement of the number
to be subtracted, the subtrahend, and adding it to another number,
the minuend. The 8051, however, has commands to perform direct
subtraction of two signed or unsigned numbers.

 Register A is the destination address for subtraction. All four
addressing modes may be used for source addresses. The commands
treat the carry flag as a borrow and always subtract the carry flag as
part of the operation.

Mnemonic Operation

SUBBE A.#n Subtract immediate number n and the C flag from A; put the result
in A

SUBE A, add Subtract the contents of add and the C flag from A; put the result in A

SUBB A,Rr Subtract Rr and the C flag from A; put the result in A

SUBB A (@Rp Subtract the contents of the address in Rp and the C fAag from A;
put the result in A

Unsigned Subtraction

015d = 00001111b
SUBB 100d = 01100100b

—085d 1 10101011b = 171d

The C flag is set to |, and the OV flag is set to 0. The 2's complement of the result 1s 085d.
The reverse of the example yields the following result:

100¢ = 0113100b
015d = 00001111b

085d 01010101b = 085d
The C Rag is sctto 0, and the OV flag is set to 0. The magnitude of the result is in true form.

Signed Subtraction

+100d = 01 100100b (Carry flag = () before SUBB)
SUBB +126d = 01111110b

=Q026d [1110G110b = —026d

There is a borrow into bit positions 7 and 6; the carry Rag is set to |, and the OV flag is
cleared.

—061d = 1100001 1b (Carry flag = 0 before SUBB)
SUBB —116d = 10001 100b

+055d 0011011 ib = +355d

There are no borrows into bit positions 6 or 7, so the OV and carry flags are cleared to zero.

—099d [0011101b (Carry flag = 0 before SUBB)
SUBB +100d = 01100100b

— 199d 00111001b = +057d

Here, there is a borrow into bit position 6 but not into kit position 7: the OV flag is setto 1,
and the carry flag is cleared 1o 0. Because the OV flag is set to [, the result must be
adjusted. In this case, the magnitude can be interpreted as the 2's complement of 71d, the
remainder after a carry out of 128d from 199d. The magnitude is correct, and the sign
needs to be corrected to a 1.

Mnpemonic

MOV 0DOh,#00h
MOV A, #3Ah
MOV 45h,#13h
SUBB A, 45h
SUBB A.45h
SUBB A,#80h
SUBB A.#22h
SUBB A,#0FFh

Operation

Carry flag = 0

A = 3Ah

Address 45h = 13h
A=2Th,C ={}, DV=
A= 14h; C =
A = 94!1;

Example: _M

 The 8051 has the capability to perform 8-bit integer multiplication and

division using the A and B registers. Register B is used solely for these
operations and has no other use except as a location in the SFR space
of RAM that could be used to hold data.

* The A register holds one byte of data before a multiply or divide
operation, and one of the result bytes after a multiply or divide
operation.

* Multiplication and division treat the numbers in registers A and B as

unsigned. The programmer must devise ways to handle signed

numbers.

* Multiplication

Mnremonic Operation

MUL AB Multiply A by B; put the low-order byte of the product in A, put the
high-order byte in B

The OV flag will be set if A ¥ B > FFh. Setting the OV flag does not mean that an error
has occurred. Rather, it signals that the number is larger than eight bits, and the program-
mer needs to inspect register B for the high-order byte of the multiplication operation, The
carry flag is always cleared to ().

Mnemonic Operation

MOV A, #7Bh A = TBh

MOV OFOh, #02h B = 02h

MUL AB A = 00h and B = F6h: OV Flag = 0

MOV A #0OFEh A = FEh
MUL AB A = |4h and B = F4h; OV Flag = 1

* Division ————XNN

Division

Division operations use registers A and B as both source and destination addresses for the

operation. The unsigned number in register A is divided by the unsigned number in regis-
ter B, as indicated in the following table:

Mnemonic Operation

DIV AB Divide A by B; put the integer part of quotient in register A and the
integer part of the remainder in B

The OV flag is cleared 1o 0 unless B holds 00h before the DIV, Then the OV flag is set to |

to show division by 0. The contents of A and B, when division by 0 is attempted, are
endefined. The carry flag is always reset.

Mnpemonic

MOV A #0FFh
MOV OF0h,#2Ch
DIV AB

DIV AB

DIV AB

jﬂl‘u’ AB

Operation
A = FFh (255d)
B = 2C (44d)

A = 05h and B = 23h [255d = (5 x 44) + 35]
A = 00h and B = (05h |05d = (0 = 35) + 5]
A = 00h and B = 00h [00d = (0 = 5} + 0]

A =77and B = 77, OV flag is set to one

—

Decimal Arithmetic

Most 8051 applications involve adding intelligence to machines
where the hexadecimal numbering system works naturally. There
are instances, however, when the application involves interacting
with humans, who insist on using the decimal number system. In
such cases, it may be more convenient for the programmer to use
the decimal number system to represent all numbers in the
program.

Four bits are required to represent the decimal numbers from 0to 9
(0000 to 1001) and the numbers are often called Binary coded
decimal (BCD) numbers. Two of these BCD numbers can then be
packed into a single byte of data. The 8051 does all arithmetic
operations in pure binary. When BCD numbers are being used the
result will often be a non-BCD number, as shown in the following
example.

23

Decimal Arithmetic

49BCD = 01001001 b
+3EBCD = 0011 1000b

R7TBCD 10000001b = BIBCD

Note that to adjust the answer, an 06d needs to be added to the result.

Mnemonic Operation

DA A Adjust the sum of two packed BCD numbers found in A register; leave
the adjusted number in A,

* The Cflagis set to | if the adjusted number exceeds 99BCD and set to
0 otherwise. It is important to remember that the DA A instruction
assumes the added numbers were in BCD before the addition was
done. Adding hexadecimal numbers and then using DA A will not
convert the sum to BCD.

 The DA A opcode only works when used with ADD or ADDC opcodes
and does not give correct adjustments for SUBB, MUL or DIV
operations. The programmer might best consider the ADD or ADDC
and DA A as a single instruction and use the pair automatically when
doing BCD addition in the 8051.

Decimal Arithmetic

Mnemaonic Operation

MOV A #42h A = 42BCD
ADD A #13h A=55hC=0

DA A A=55hC=10
ADD A #17h A=6Ch C=0
DA A A=TIBCD:C=10
ADDC A, #34h A=Ab6h,C =10
DA A A=06BCD;C=1
ADDC A #11h A=1RBCD;C =10
DA A A = |RBCD; C =0

25

