
Microcontroller (EEC421)

Lecture 8

Dr. Islam Mohamed

Electrical Engineering Department
Shoubra Faculty of Engineering, Benha University

Islam.ahmed@fen.bu.edu.eg

2

MicrocontrollerMicrocontroller

 Lecture 8: ARITHMETIC OPERATIONS

 Introduction

 Flags

 Instructions Affecting Flags

 Incrementing and Decrementing

 Addition :Unsigned and Signed Addition

 Multiple-Byte Signed Arithmetic

 Subtraction :Unsigned and Signed Subtraction

 Multiplication and Division

 Decimal Arithmetic

:

INTRODUCTION

 Applications of microcontrollers often involve performing
mathematical calculations on data in order to alter program flow
and modify program actions. The domain of the microcontroller is
that of controlling events as they change (real-time control).

 A sufficient number of mathematical opcodes must be provided,
however, so that calculations associated with the control of simple
processes can be done, in real time, as the controlled system
operates. When faced with a control problem, the programmer
must know whether the 8051 has sufficient capability to
expeditiously handle the required data manipulation. If it does not,
a higher performance model must be chosen.

:

INTRODUCTION

• The arithmetic opcodes are grouped into the following types:

: Flags

• A key part of performing arithmetic operations is the ability to store certain results of those
operations that affect the way in which the program operates.

• For example, adding together two one-byte numbers results in a one-byte partial sum,
because the 8051 is an eight-bit machine. But it is possible to get a 9-bit result when adding
two 8-bit numbers.

• The ninth bit must be stored also, so the need for a one-bit register, or carry flag in this
case, is identified. The program will then have to deal with the ninth bit, perhaps by adding
it to a higher order byte in a multiple-byte addition scheme. Similar actions may have to be
taken when a larger byte is subtracted from a smaller one. In this case, a borrow is
necessary and must be dealt with by the program.

• Not all instructions change the flags, but many a programming error has been made by a
forgetful programmer who overlooked an instruction that does change a flag.

• The 8051 has four arithmetic flags: the carry (C), auxiliary carry (AC), overflow (OV), and
parity (P).

:Instructions Affecting Flags

 The C. AC, and OV flags are arithmetic flags. They are set to 1 or cleared to 0
automatically, depending upon the outcomes of the following instructions.

 The following instruction set includes all instructions that modify the flags and is
not confined to arithmetic instructions:

remember that the flags are all
stored in the PSW.

:

 A flag may be used for more than one type of result. For example,

the C flag indicates a carry out of the lower byte position during

addition and indicates a borrow during subtraction.

 The parity flag is affected by every instruction executed. The P flag

will be set to a 1 if the number of 1 's in the A register is odd and

will be set to 0 if the number of 1 's is even.

Instructions Affecting Flags

:Incrementing and Decrementing
 The simplest arithmetic operations involve adding or subtracting a binary 1 and a number.

 These simple operations become very powerful when coupled with the ability to repeat the

 Operation that is, to "INCrement" or "DECrement" -until a desired result is reached.

 Register, Direct, and Indirect addresses may be INCremented or DECremented.

 No math flags (C, AC, OV) are affected.

:Incrementing and Decrementing

Example:

: Addition
• All addition is done with the A register as the destination of the result.

• All addressing modes may be used for the source: an immediate number, a register,

a direct address, and an indirect address.

• Some instructions include the carry flag as an additional source of a single bit that

is included in the operation at the least significant bit position.

:Unsigned and Signed Addition

• Signed numbers use bit 7 as a sign bit in the most significant byte (MSB) of the

group of bytes chosen by the programmer to represent the largest number to

be needed by the program.

• Bits 0 to 6 of the MSB, and any other bytes, express the magnitude of the

number. Signed numbers use a 1 in bit position 7 of the MSB as a negative sign

and a 0 as a positive sign. Further, all negative numbers are not in true form,

but are in 2's complement form.

• In signed form, a single byte number may range in size from IOOOOOOOb,

which is - 128d to 01111111 b, which is + 127d. The number OOOOOOOOb is

OOOd and has a positive sign, so there are 128d negative numbers and 128d

positive numbers.

:

• Unsigned Addition

 Unsigned numbers make use of the carry flag to detect when the result of an ADD

operation is a number larger than FFh. If the carry is set to one after an ADD, then

the carry can be added to a higher order byte so that the sum is not lost. For

instance,

Unsigned and Signed Addition

:

• Signed Addition
 If unlike signed numbers are added, then it is not possible for the result to be

larger than -I28d or + 127d, and the sign of the result will always be correct.

Unsigned and Signed Addition

 If positive numbers are added, there is the possibility that the sum will exceed +
127d, as demonstrated in the following example:

 OV flag

:

• Signed Addition

Unsigned and Signed Addition

A general rule is that if the OV flag is set, then complement
the sign. The OV flag also signals that the sum exceeds the
largest positive or negative numbers thought to be needed
in the program.

Add with Carry Mnemonics:

Subtraction

• Subtraction can be done by taking the 2's complement of the number
to be subtracted, the subtrahend, and adding it to another number,
the minuend. The 8051, however, has commands to perform direct
subtraction of two signed or unsigned numbers.

• Register A is the destination address for subtraction. All four
addressing modes may be used for source addresses. The commands
treat the carry flag as a borrow and always subtract the carry flag as
part of the operation.

Subtraction

Unsigned Subtraction

Subtraction
Signed Subtraction

Subtraction

Example:

Multiplication and Division

• The 8051 has the capability to perform 8-bit integer multiplication and

division using the A and B registers. Register B is used solely for these

operations and has no other use except as a location in the SFR space

of RAM that could be used to hold data.

• The A register holds one byte of data before a multiply or divide

operation, and one of the result bytes after a multiply or divide

operation.

• Multiplication and division treat the numbers in registers A and B as

unsigned. The programmer must devise ways to handle signed

numbers.

Multiplication and Division

• Multiplication

Multiplication and Division
• Division

23

Decimal Arithmetic
• Most 8051 applications involve adding intelligence to machines

where the hexadecimal numbering system works naturally. There
are instances, however, when the application involves interacting
with humans, who insist on using the decimal number system. In
such cases, it may be more convenient for the programmer to use
the decimal number system to represent all numbers in the
program.

• Four bits are required to represent the decimal numbers from 0 to 9
(0000 to 1001) and the numbers are often called Binary coded
decimal (BCD) numbers. Two of these BCD numbers can then be
packed into a single byte of data. The 8051 does all arithmetic
operations in pure binary. When BCD numbers are being used the
result will often be a non-BCD number, as shown in the following
example:

24

Decimal Arithmetic

• The C flag is set to I if the adjusted number exceeds 99BCD and set to
0 otherwise. It is important to remember that the DA A instruction
assumes the added numbers were in BCD before the addition was
done. Adding hexadecimal numbers and then using DA A will not
convert the sum to BCD.

• The DA A opcode only works when used with ADD or ADDC opcodes
and does not give correct adjustments for SUBB, MUL or DIV
operations. The programmer might best consider the ADD or ADDC
and DA A as a single instruction and use the pair automatically when
doing BCD addition in the 8051.

25

Decimal Arithmetic

